SIRAS-G: ESTC 2005 Mid-Program Progress Report

Dan Michaels for
Thomas Kampe
Ball Aerospace & Technologies Corp.
June 30, 2005

7/5/05

SIRAS-G: A NASA Instrument Incubator Program

- □ SIRAS-G: Spaceborne Infrared Atmospheric Sounder for Geosynchronous Earth Orbit (GEO)
 - SIRAS-G is an infrared sounder with high spectral resolution ($\lambda/\Delta\lambda$) of 800 1400, operating in the 3.35 15.0 μ m band
 - Grating spectrometers are used for the fine spectral separation

The flight instrument divides this spectral range into 3 or 4 spectrometer channels, depending on intended application

Table 1. SIRAS -G Grating Spectrometers					
Spect	Band (μm)	Comments			
1	3.35 - 4.8	Build in 2003 IIP			
2	6.2 - 8.22	Design in 2003 IIP			
3	8.8 - 12.0	Design in 2003 IIP			
4	12.3 - 15.4	Built in 1999 IIP			
	· · · · · · · · · · · · · · · · · · ·				

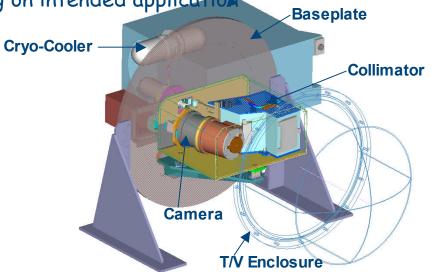
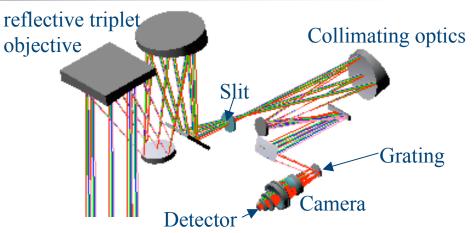


FIGURE 1. LAYOUT OF THE SIRAS -G LAB DEMO


Spaceborne InfraRed Atmospheric Sounder for GEO

PI: Thomas U. Kampe / Ball Aerospace

The Spaceborne Infrared Atmospheric Sounder for Geosynchronous Earth Orbit (SIRAS-G)

Description

- Reflective/Refractive Wide field hyperspectral IR optical design:
 - maximizes signal collection efficiency
 - allows for compact instrument & low mass
- IR imaging spectrometer with very low spectral smile and keystone distortion
- Warm shield design reduces heat loads and minimizes active cryocooler requirements
- 2D FPA's: simultaneous spatial/spectral imaging
- Improved spatial resolution over heritage instruments allows more cloud-free observations Approach
- · Design hyperspectral IR optical system
- Mate spectrometer assembly & Ball SB235 cryocooler
- Test radiometric and spectral response & sensitivity.
- Demonstrate spectrometer assembly (collimator, beamsplitters, spectrometer, dewar, FPA and cables) spectral response.
- Demonstrate warm shield performance
- Demonstrate BATC Proprietary test methodologies for smile, keystone distortion,

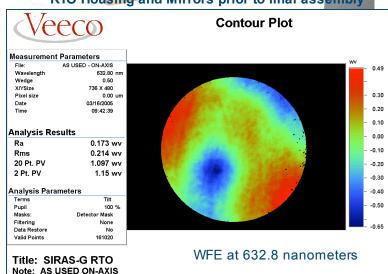
Optical design of the SIRAS-G Laboratory Demo Instrument

Applications

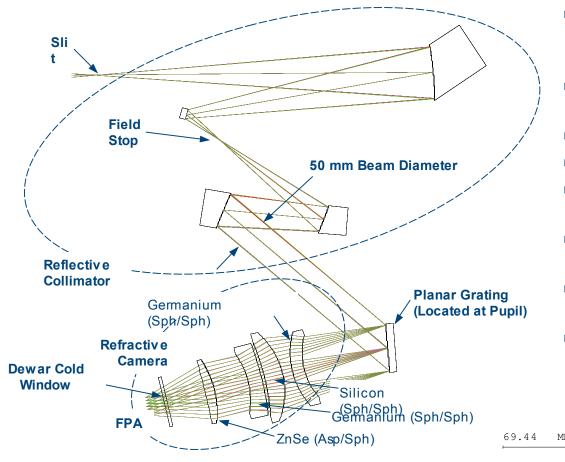
- · Primary Atmospheric temperature, moisture and rainfall from GEO
- · Secondary Trace gas measurement from GEO
- Secondary Temp, H₂O, trace gases from LEO

Partner/Collaborator Organizations

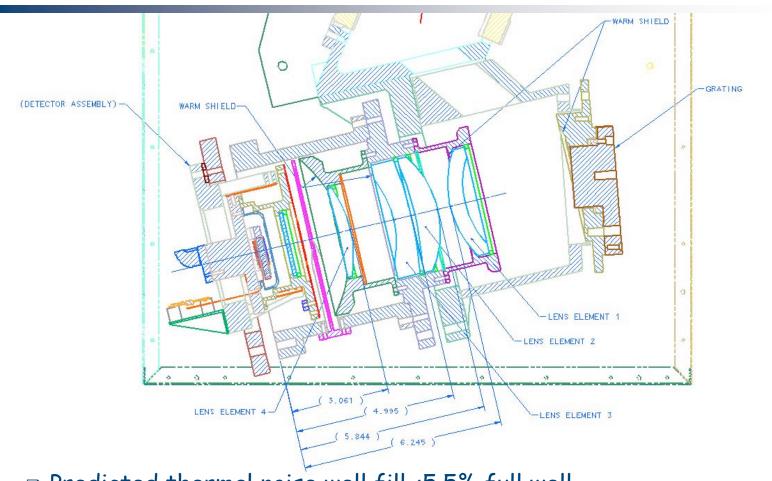
- · Ball Aerospace & Technologies Corp. / Civil Space Advanced Programs - Earth Sciences
- Jet Propulsion Laboratory


7/5/05

The Reflective Triplet Objective (RTO) is Complete


- □ RTO delivered to BATC on March 24, 2005
- RTO meets all performance requirements specified
- □ WFE is 0.20 0.30 waves RMS @ 632.8-nm
 - corresponds to approximately 0.03 to 0.047 waves RMS at operational

RTO during Optical Testing at Corning NetOptix

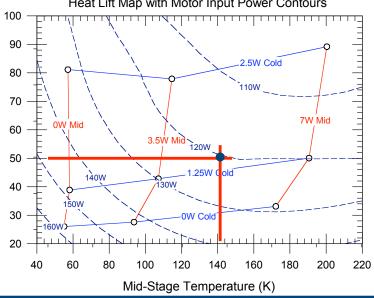

Aft-Optics Design Controls Distortion on Large FPA

- □ Demo Instrument optical system designed for the RSC Hawaii 1-RG Array (1024x1024, 18µm pixels)
- Distortion controlled to less than 20% of a pixel over entire extent FPA
- □ 1024 x 1024 Format Array
- □ 0.018-mm Pixel Pitch
- Spatial and spectral resolution elements = 2 pixels
- □ Slit width = 2 pixels (Nyquist sampling)
- □ Slit length = 2*18 mm = 36.0 mm, or 1000 pixels
- □ Slit image is smaller in length than FPA.
 - Avoids illuminating inactive pixels or leads & wires around FPA.
 - Provides margin for alignment of FPA to slit
 - Since ends of slit are on active

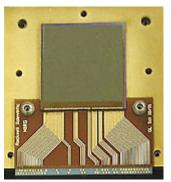
pixels alignment of the slit can

Camera Assembly Design Integrates Warm Shields

- □ Predicted thermal noise well fill <5.5% full well
- □ Tests planned with/without warm shield aperture stop

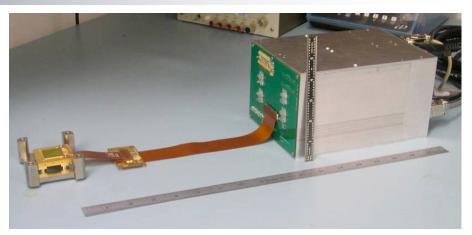

yields warm shield performance

Ball 3B233 Cryocooler Cools Detector and Aft Optics


- □ FPA Assembly <50 K
- □ 140 K Aft-optics
- □ 10.5 kg
- □ Non-contacting operation
 - -60C to +80C
- □ 99% reliability at 10 years
 - SB235 life tests in progress
- □ 3rd Generation Multi-stage, 50 K Performance:
 - 1.4W @ 50 K
 - & 4.5W @ 140 K for 120 W motor
 - Excellent HIRDLS performance
- □ 1-g orientation insensitive
- Active vibration isolation to below 0.10 N
- High side loads tolerated using fixed-regeneration cold finger

SB235 Higher Cooling Performance 90% Stroke - 39 Hz - 75° Heat Lift Map with Motor Input Power Contours

IR Detector Ready For Delivery To Ball



Rockwell Hawaii 5.2micron Cut-Off Infrared Focal Plane Array

1024 x 1024 HgCdTe/CdZnTe

FPA Subcontract complete:

- □ 1024 x 1024 Hawaii-1RG MWIR FPA from Rockwell Scientific Company
- Includes read-out electronics and image processing system
- □ 9 month delivery
- Acceptance test complete end to end @50K
- □ >65% (expect>80) responsivity (QE)
- □ 21e- total noise @ 74Hz frame rate
- □ 4.7% non-uniformity

Detector Readout Electronics and Detector

Detector Readout Electronics and Test Apparatus

Mission Conceptual Studies Initiated

- □ First mission being studied is an AIRS Follow-On Mission
 - Low-Earth Orbit; enhanced spatial resolution
 - Mission focused on retrieval of atmospheric temperature profiles, water vapor profiles, ozone column and cloud properties

Spectral coverage and resolution optimized for these parameters

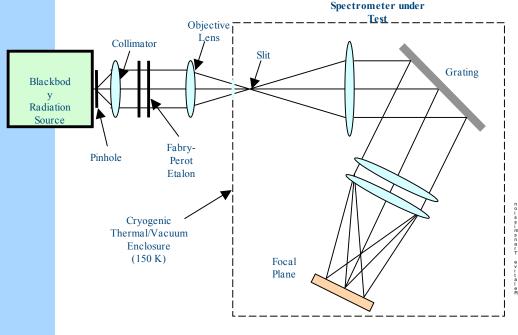
□ Second study will focus on GEO

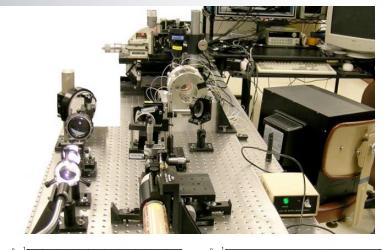
Attogs phenic - Chemislingte mission

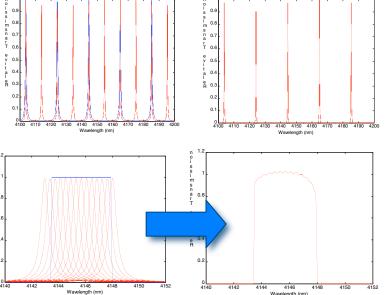
Key Measurement Requirements:

Spatial resolution: 1-km

Swath coverage: 1650 km (TBR)


Radiometric Noise < 0.2K (TBR)


Measuremen	Accuracy			
†	(req.'ed : goal)			
Surface Temperature	1K: 0.5K			
Temperature	1K (rms)			
profiles	(1-km layers < 100mb)			
Humi di ty	20%: 10%			
profile	(2-km layers < 100mb)			
Column Ozone	20%			


Measurement	Spectral Range (cm ⁻¹)	Min. res (cm ⁻¹)	Goal res (cm ⁻¹)	Notes
Temperature profiles	650 - 768 2228 - 2255 2380 - 2410	0.5 2.0 2.0	0.5	Higher spectral resolution improves T sounding throughout range
Humi di ty profiles	1370-1610	2.0	0.5	Weaker water lines near 2600 cm ⁻¹ used AIRS
Ozone Column	1001-1069	0.5	TBD	Very high resolution necessary for profile info.
Surface Temperature	750-1200	~1.0	0.5	Several channels: 750- 1235 cm ⁻¹ and >2400 cm ⁻
Dust properties	750-1200	~1.0	0.5	Higher resolution improves UT/LS retrievals
Cloud properties	750-1200	~1.0	0.5	3 channels: 8,10,12 μm

Fabry-Perot Etalon Test Approach Developed

- □ Tests broad range of Hyperspectral instruments
 - VIS/NIR thru LWIR
- □ Patent Application submitted
- □ Direct measure of SFR

7/5/05

Summary

- □ BATC's 3 year effort is half complete
- □ Major procurements are complete or in progress
- □ Initial performance studies indicate high quality temperature, water, ozone retrievals are achievable with 1km spatial resolution
- Study in progress to determine LEO applicability
- □ Laboratory demonstration unit delivers on low volume, low mass promise
- □ Large format detector arrays allow high spectral and spatial resolution on broad spatial extent